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ABSTRACT .. .. .

We prove that weak derivatives in general Orlicz spaces are globally

strong derivatives with respect to the modular convergence. Other

approximation theorems involving the modular convergence are presented, which

improve known density results of interest in the existence theory for stronaly

nonlinear boundary value problems.
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SIGNIFICANCE AND EXPLANATION

One classical result in partial differential equations is the equality of

weak derivatives (i.e. derivatives in the distribution sense) and strong

derivatives (i.e. derivatives obtained from smooth functions by a limiting

process). Such an equality holds in the setting of LP spaces, as was proved

locally by Friedrichs in 1944 and later globally by Meyers-Serrin in 1964.

Orlicz spaces are generalizations of LP  spaces where, roughly speaking,

the defining function t + ItIp is replaced by a function whose growth at

infinity is not necessarily of polynomial type. They have been successfully

used in recent years in the study of several questions from partial

differential equations, as the limiting case of the Sobolev imbedding theorem

or the existence theory for strongly nonlinear boundary value problems. In

the latter theory, problems related to the equality of weak and strong

derivatives in the setting of Orlicz spaces play an important role. Such an

equality does not hold for general Orlicz spaces. The main purpose of this

paper is to provide an adequate substitute by slightly modifying the limiting

process involved in the definition of strong derivatives.

T TC  , .

The rrponsihility for the wordingl and views expressedi in this descriptive
summary lies with MRC, and not with the auithor of this report.



SOME APPROXIMATION PROPERTIES IN
ORLICZ-SOBOLEV SPACES

Jean-Pierre Gossez (I )

STATEMENT OF RESULTS

Let L M(Q) be the Orlicz space on an open subset Q of RN

corresponding to a N-function M and let E (Q) be the norm closure in
M

L (1) of the LO(O) functions with compact support in '. The Sobolev
M

space of functions u such that u and its distributional derivatives up to

order m lie in LM (2) (resp. EM (Q)) is denoted by WmLM () (reso.

WM EM ()). Standard references about these spaces include [11,1,12].

A well-known theorem of Meyers-Serrin [13] states that for I < p < =,

c*(2) n Wm'P() is norm dense in Wm'P(2), i.e. weak derivatives in LP(G)

are globally strong derivatives (the local version goes back to Friedrichs and

his mollifiers [7]). This was extended to the Orlicz spaces setting by

Donaldson-Trudinger [4) who proved that Cc(2) n WmEM () is norm dense in

WiE M(a). The corresponding statement with EM replaced by LM  is not true,

even locally, simply because a L (Q) function may not belong to E (P,) for
M

, cc Q (take 0 = ]-1,+1[, M(t) = et2 - 1 and u(x) = (log jx-1)1 /2 ).

Our first result concerns the density of C cc) ( W'L M(S) in W L M(P) witli

respect to a weaker convergence, the so-called modular convergence [14].

THEOREM 1. Let u c DW'LM (SI). Then there exist X > 0 and a secuence

uk c (2) n WmLM(Q ) such that for Ijl 4 m, fpM( - Du./X) as

k* +

M1 1Denartement ce Mathematique, C.P. 214, Universite Libre de Bruxelle5, 1()'(
Bruxelles, Belgium.
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As will be seen in the proof, it suffices to choose X such that

16/X rDu e L (QS) for tel = m, where L (Q) denotes the Orlicz class.
MM

Consequently, when u E WmEM(P), X can be taken arbitrary small, and we

recover from theorem 1 the result of [4] mentioned above.

The space Wm L M() will, as usual, be identified to a subspace of the

product 11 L (0) E HL . nenoting by M the N-function conjugate to M,

we consider the weak topologies a(nLM, TE_) and o(ILM, HL_). Density

results involving the latter play an important role in the existence theory

for stronsly nonlinear boundary value problems (cf. (8,3]). Comparing the

modular convergence with (TILM, HL_ ) (lemma 6 below), we obtain the
M

following

COROLLARY 2. C(0) n WVL (Q) is 0(TL , TL_ ) dense in WIL (Q).
M - M -

M

We now turn to the approximation by functions which are smooth up to the

boundary, assuming some regularity on Q. Recall that 9 is said to have the

segment property when there exist an open covering {U.} of U and
N1

corresponding vectors fyi e R N } such that for x e n Ui and 0 < t < 1,

x + ty Q; P4 has the cone property when there exists a finite cone C

such that each x C 2 is the vertex of a cone C c Q congruent to C. Itx

was proved in (81 that if Q has the segment property, then D (i) is

~(7L, 2L_ densein .W LM(a), where D (5) denotes the restrictions to S1
M

of the 4ljntions in D (RN). This is improved in our next result under the

assumption that also has the cone property.



THEOREM 3. Suppose that Q satisfies both the segment and the cone

property. Let u C WL M(n). Then there exist A > 0 and a secuence

uk e D( ) such that for al ( m, f M((Dauk - D u)/X) + 0 as k + .

The proof will show that it suffices to choose X such that

16(N+1)/X Dau L M(Q) for IaI 4 m. Moreover the cone property is only used

to guarantee that an element v C W1 L M() with compact support in 'a lies in

E M() (the imbedding theorem of (4] implies v £ C(Q) n Lc* ) or

v c LM,(Q) with M* a N-function which, by lemma 4.14 of [8], increases

essentially more rapidly than M, and so, in any case, v C EM ()). This

fact probably holds under a weaker assumption on Q. Anyway, taking again X

arbitrary small, we recover from theorem 3 the result of [4] that if S has

the segment property, then D(O) is norm dense in WE M().
mm

Finally we consider the analogue of the-0 spaces. WoL M(Q) is

defined as the a(RL , E ) closure of V(Q) in WL 01) and O0F (Q) as
M M 0OH

the norm closure of V(Q) in WML M() (or equivalently in WME M(0)). When

aS? is sufficiently regular, one can define the trace on aSI of D u for

u C 14MLM(Q) and Ial 4 m-i, and prove that the functions in 10%01)

(resp. WOnE (Q)) are precisely those in WL (Q) (resp. WmE (Q)) whose
0OM M M

trace and normal derivative up to order m-1 on aQ vanish (cf. (6,9])j.

THEOREM 4. Suppose that Q satisfies the segment property. Let

u C WVPL (P). Then there exist A > 0 and a sequence uk c VG2) such that
o ,

for acz m , f~ M( (Dctu Dau) /X) + 0 as k + cc.



The same estimate on X as in theorem 3 holds here. Theorem 4 imnrovs

our result of [8] that if D has the segment property, then D(2) is

m
o(ML IL ) dense in WoLM().

M
The proofs of the Wm'EM( ) results of (4] referred to above as well as

those of the o(HLM , L ) versions of theorems 3 and 4 qiven in (8] are
M

rather ;imple modifications of the standard LP  proofs. To get corollary 2

')' t2. )ru 1, 3 and 4 requires more involved calculations, although the

construction of the approximants is basically the same. An ineauality which

will be used repeatedly is

M(l r.) 4 r
"1I w Mr ri

ii i

where ri C R and r is the maximum number of nonzero ri's. When the

riIs originate from a partition of unity, a control on r can be obtained

from simple topoloqical considerations (lemma 7 below).

PROOFS.

Given a function u(x), we denote by uy its translate uy(x) = u(x-v),

by u6  its regularization u6 = u * P6 where p6 c V(RN), p6 (x) = 0 for

j > 6, p6 1 0 and, and bv u the function u = u
6  a N6 r r r

where r (x) = *P(x/r) with C (R N), 0 4 4 1, P(x) = 1 For Ix! r I

,and ,(x) = 0 for lxi ) 2. The following lemma will be needed.

LF5MA S. If u £ L (2 ) with 2u £ L (RN ), then M(u - u) a =
M M ~

bI 0 and f N M(u6 - u) * 0 as 6 + 0. If u c LM( , R

.11- u) * 0 as r +
r-

-4-



PROOF. We consider u6  the case of uy is treated similarly and that

of ur is immediate. Since u + u in L I N(RN), one has, for a

subsequence, u6 + u a.e. and so M(u6 - u) + n a.e. Moreover

1 1 1 1
M(u6 - u) 4 2 M(2u,) + 2 M(2u) 4 2 (M(2U))6 + 2 M(2u)

where we have used Jensen's integral inequality. Since (M(2 u))a I M(2u) in

Ll(RN), we conclude by Vitali's theorem that M(ud - u) + 0 in LI(RNI).

Q.E.D.

Thus we see that for any u £ L (RN), u + u with respect to the modular
M

convergence (i.e. there exists X > 0 such that fN M((u 6 - u)/X) + 0). In
R 

N

general u6 does not converge to u in the mean (i.e. the above with

X -I1) and aNfortiori in norm. When u N EM(0), then 2u/e L M(R for

all A > 0 and by taking A arbitrary small, we eventually derive from lemma

5 that u6  converges to u in norm, a result originally given in [2).

Similar remarks apply to uy.

PROOF OF THEOREM 1. Let u e wAM"(Q) and choose A > 0 such that 16/k

Daue L (Q) for jal - m. Let C > 0, c ( 1. we will prove that there

exists v £ Cc(9) n WmL M(9) such that

(1) ]M((D'v - D'u)/A) 4 C

for fa ( m.



Define for i = 1, 2,...,

{x C Q; Ixf < i and dist(x, Dn) > I/i ,1

and also, for convenience, 0-2=Q = no Let i = 1,2 .... be a

C partition of unity on n such that supp Q1 c \i+\1 i_. For each

i = 1,2,..., let pa = Pi be a mollifier satisfying

(2) 61< 1/(i+I)(i+2)

(3) II(DS1i DYu) * P - i DYU1UM, < X/a2i+1

for all I + yj 4 m with JyI < m, and

(4) fn M(8(( i Du) * - D u)/X) e/ 2 i

for lIl = m. Here 1I II denotes the Luxemburg norm in LM(Q).

11IwlIM, =1 inf{h > 0; fn M(w/h) 4 1)

and the number a is defined in terms of the coefficients which appear in

Leibnitz formula:

(5) ~~a m rax( ~ ~



Condition (3) can be fulfilled because on a smooth bounded domain, L is

(compactly) imbedded into wm-1E M  (see the introduction) and so DYu,

1Y1 < m, lies in E oc(). Condition (4) can be fulfilled by applying lemma
M

5. It follows from (2) that (iu) * Pi has support in Q i+2\Q .2  Thus the

series

v- [ u) -0P
i= 1

is trivially convergent and v c C"(O). The fact that v e TI'LM(Q) will

follow once (1) is proved.

To verify (1), take j = 1,2,... and write

j+1 af M((Dv - Dau)/X) = M( (D'(iu) * pi - D ( iu))/X)
j j i=1 1 I

2 2' M(2 j+ ()((D . D YU) * P. - )~ D Yu)/X)
=1 B+y=a,I-yI<m1 1

j+12 - I ; . M(2 (( iDau) * i- WiDau)/X) = 1 + 12

where the term 12 does not appear when laI < m. We have

-1 j+1

< c2-1 a- 1 2' , (a) M(2 i+l a((Da iDYu) *p, - D.DY u)/cX)
i=1 a+y=a , IY1<m1

<E/2

by (3) and the definition of the Luxemburg norm. To study 12, we observp

that for a.e. x E Q.,
3

-7-



M(2 J+1 ( - IiDu)/X) L j 1

M(2 D U) " D i < M(8((*iDU) *Pi - iDu)/X)

sinc- it most 4 terms of the sum are nonzero at x. Consequently, using (4,

we 7et 11 < C/8. So

M((D v - D aU)/X) <
J

and letting j + -, we obtain (1).

Q.E.D.

By a a simple modification of this proof one can show that the uk s in

the statement of theorem I can be taken so that DaUk + Dau in norm for

lal < m.

Corollary 2 is a direct consecuence of theorem 1 and the followinu

LEMMA 6. Let uk, u C LM((n). If uk + u with respect to the modular

convergence, then uk + u for O(L M, L_).

M

PROOF. Let A > 0 be such that fo M((uk - u)/A) + 0. Thus, for a

subsequence, uk + u a.e. in P. Take v e L (0). Multiplying v by a

M
suitable constant, we can assume Xv e L (0). By Young's inequality,

(u - u)vI < M((U - u)/X) + M(xv)
k k

which implies, by Vitali's theorem, that f j(u k - u)vI 0

--8-



The proof of theorems 3 and 4 uses the followina lemma from general

topology.

LEMMA 7. Let A be a closed subset of RN  and let {U i be an open

covering of A. Then {U. can be refined into a locally finite countable1

open covering {V.) of A with the property that at most N + 1 distinct3

Vj's have a nonempty intersection.

Lemma 7 follows from the fact that the covering dimension of Rl' is "

(cf. (51). All we need actually for our purposes is an estimate on the

maximum number of intersecting Vj's which is independent of A and of the

covering [U.). Such an estimate can be obtained directly by elementary1

means, as we now briefly indicate.

Recall Lebesgue's lemma (cf. [10] ): given an open covering of a compact

set K in a metric space, there exists r > 0 such that the open r-hall

about each point of K is contained in some member of the covering. we aWe v

this lemma successively to the covering (U,) and to the sets1

A n B(0,1), A n (B(0,2)\B(0,1)),... and get a (possibly finite) sequence of

radius r, r2 1 r 3 ,... which clearly can be taken such that each r. < 1/3

and r i > r2 > .... Now we cover A I P(0,1) wit- a finite nunber of balls

B(y 1 , r1 ) chosen in such a way that v £ A - but

yIX 4 B(yi' r1) U...LU B(y1 , r ). Next we cov'er A (F(0,2J ,

with the halls P(y 1,£' rl) and a ;init, nunber o-f r") C

in such a way that y C A n] (B(0,2)\R(P,1)) but v.,, qnv , ,r !

Y2,k j B(y2,1'r 2 ) :.. L B(Y2,klr 2 ). And so on. The 'amilv S of t

balls P(YD,q, rp) constructed in this way constitutes a l'-allv init-

P i



countable onen covering of A and is a refinement of 0U1.} Moreover, since

I

each r. is < 1/3, a ball B(yp,q, r.) can only intorsect either balls

with radius r and rp_- or balls wit), radius r. ani r,,l. Also,

since r, > r2 >..., the only ball of the family B to which yp,q belonqs

is S(YPIC, rp). Using these facts it is then easy to Nrerify that any

subfamily of B with nonempty intersection contains at most 2 dN members,

where d N denotes the maximum number of points xs which be nut inside the

unit ball B(0,1) of RN with Ix. - xtl > 1 for s 5 t.

PROOF OF THEOREM 3. Let u E WmLM (Q) and choose X > 0 such that

16(N+1)/ D u C LM () for jai 4 m. We will show that for Ji m,

(6) fj M(2(D% - )/X) + 0

as r =, where ur = P ru is the function involved in lemma 5. We will

also show that for each r and for each n > 0, n ( 1, there exists

v c D(-2) such that for Ica I

(7) f2 M(2(D e ur - Dav)/X) ( n

The conclusion of theorem 3 then follows easily.

To verify (6), we write

-in-



Jo M(2(D u - DU r)/X)

S2"1 f M(4(Dau - rDa u)/X)

-1 -1 a -I l

-(8) 2 M(4a r (D P)(x/r)D u/\)

$+Y=a,1a1>o

Here a is the number defined by (5). Each term on the right hand sidp goes

to zero as r , the first one by lemma 5 and the second one by direct

examination.

To verify (7) we use the covering {U.} of given by the segment1

property. Refining {U.} if necessary, we can assume that it satisfies the1

properties stated in lemma 7. In particular i = 1,2,..... Let { hi. he a

C partition of unity on S2 subordinate to {U.}. Clearly supp 1 c
1 1

for some open set U. with compact closure U. c Ui. Write r. = U. n a

and rir t  r i - tyi where yi is the vector associated to U i by the

segment property. Extend ur outside 0 by zero and note that *iur

vanishes identically for i ) some ir . Note also that the translate

(i u r) t(x) (u r)(X + ty.), 0 < t < 1, belongs to WmL M(RN\r ) andir i M ,t I
that, by the segment property, dist(r , 12) > 0. For each

i = 1,2,...,i r , choose 0 < ti < 1 and P6 Pi, 6i < dist(r.,t P), such
1 1

that

(8) II(D i DY u) * p. - Di DY u 1M,I S XI/2 i + 2

1

for all 18 + Y1 4 m with IYI < m, and

( a iDau )/X) i n/2(9.) J M(4(N+1)(( iD Urt * pi - 4 . u /r /

-11-



for lIl = m. Condition (8) can be fulfilled because Dlu £ E (Q) for

r M

iyi < m (the cone property is used here, see the introduction). Condition

(9) can be fulfilled by two consecutive applications of lemma 5. Taking ti

and 6. smaller if necessary, we can assume that supp(*iu ) t . .
1~~ rt 1

Define
r(10) v = [ ('i.u) " £t€

i=1 1

and observe that by the property of lemma 7, at each x c SI, the sum above

contains at most (N + 1) nonzero terms. We have

i
M(2(D'v - D'Ur)/X) = M(2 ((D (iUr)) , p - D( iU ))aX)

ur/% i r t i r
i

42 - 1 fo M(4 Ir I (L )((D D Y urt Pi D D u U)/l

i=1 B+y-ci<m

+ 2" r M(4 D r (DiU , p - pD aru /X) I +  I
i r t. i i r 1 2i=1 1

where the term 12 does not appear when jal < m. Now

1 4+~ttk i 2t i 1 a-1  r - fo M(i+2 W(D a D~1 Y u D WD' Yu)/r
ii

i=1 ~ y ,I r< t i i I r

4 TI/2

by (8) and the definition of the Luxemburg norm. Since at a.e. x £ ,

i
M(4 r iu r) * Pi " 4Dau r)/x)

i

4 (N+1)- I- M(4(N+1)((- D u r t P D u )x)

-12-



we obtain from (9) that 12 < n/2, and so (7) is proved.

PROOF OF THEOREM 4. It is essentially the same as that of theore'l 3

except that one replaces in (10) ti by -ti and chooses 6. with

6. < dist ((supp n M) + typ R N\)

One also uses the fact that by extending a h'mL (S2) function by zero outside
0OM

one gets a WmLM(RN) function. This allows us to avoid the cone

property for S1.

Q.E. D.

We remark that when Q is bounded, the above arguments can be carried

through without using lemma 7. The coefficient X is then chosen so that

8b/X Dau £ L (Q) for II = m, where b is the number of pieces of the
M

covering (Ui} needed to cover 0.

As for theorem 1, one can show by a simple modification of the proofs

that the uk's in the statement of theorems 3 and 4 can be taken so that

D uk D u in norm for ail < m.

1-
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